Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 544
Filtrar
1.
J Sci Food Agric ; 104(6): 3614-3623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148706

RESUMO

BACKGROUND: Pectin was considered as a potential candidate to improve the thermal stability of anthocyanins, and the binding ability of pectin to anthocyanins was influenced by its structure. In this study, sunflower pectins, modified by ultrasound (40 kHz) for different periods of time, were prepared and used to bind with anthocyanins, extracted from purple sweet potato. RESULTS: Characterization and thermal stability of pectin-anthocyanin complexes were investigated. The ultrasonic modification of pectin resulted in many changes in pectin chemical structure, including degradation of neutral sugar side chains, breakage of methoxyl groups, and increased molecular flexibility. Extension of ultrasonic modification time led to greater changes in pectin chemical structure. Analysis of the binding ability, as determined by Fourier transform infrared spectroscopy and molecular dynamics simulations, revealed that the interaction between pectin and anthocyanins was driven by hydrogen bonding, electrostatic interaction, and hydrophobic interaction. Pectins with different ultrasonic modification times bound with anthocyanins to different extents, mainly resulting from an increase in the number of hydrogen bonds. According to high-performance liquid chromatographic analysis, during heating at 90 °C the stronger the binding ability of pectin and anthocyanin complex, the better was its thermal stability. CONCLUSION: Ultrasonic modification of pectin could effectively enhance its binding ability to anthocyanin. © 2023 Society of Chemical Industry.


Assuntos
Ipomoea batatas , Pectinas , Pectinas/química , Antocianinas/química , Ultrassom , Açúcares/química
2.
Food Chem ; 423: 136208, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37163914

RESUMO

Kombucha is widely recognized for its health benefits, and it facilitates high-quality transformation and utilization of tea during the fermentation process. Implementing on-line monitoring for the kombucha production process is crucial to promote the valuable utilization of low-quality tea residue. Near-infrared (NIR) spectroscopy, together with partial least squares (PLS), backpropagation neural network (BPANN), and their combination (PLS-BPANN), were utilized in this study to monitor the total sugar of kombucha. In all, 16 mathematical models were constructed and assessed. The results demonstrate that the PLS-BPANN model is superior to all others, with a determination coefficient (R2p) of 0.9437 and a root mean square error of prediction (RMSEP) of 0.8600 g/L and a good verification effect. The results suggest that NIR coupled with PLS-BPANN can be used as a non-destructive and on-line technique to monitor total sugar changes.


Assuntos
Chá de Kombucha , Sistemas On-Line , Dinâmica não Linear , Chá de Kombucha/análise , Açúcares/química , Açúcares/metabolismo , Fermentação , Espectroscopia de Luz Próxima ao Infravermelho , Calibragem , Modelos Lineares
3.
Food Chem ; 419: 136067, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37015166

RESUMO

The coexistence of anthocyanin with the sugar degradation product 5-hydroxymethylfurfural (5-HMF) is inevitable during the processing and storage of anthocyanin-rich juices. It was determined from our study that lower concentrations of 5-HMF have little effect on the stability of Cyanidin-3-O-glucoside (C3G), and even cause a slight increase for a short period of time. As the concentration of 5-HMF increased, the retention of C3G decreased and the color of the solution changed from orange-red to purple-red. The reaction sites of 5-HMF and C3G in its hemiketal form were predicted by quantum chemical calculations in order to investigate the pathways of action of the two. The degradation mechanism of 5-HMF on anthocyanin was verified by Ultraviolet and Visible spectrophotometer and Ultra performance liquid chromatography-mass spectrometry. Therefore, this article provides further theoretical support for the study of the effect of furfural compounds, which are sugar degradation products, on the stability of anthocyanins.


Assuntos
Antocianinas , Furaldeído/análise , Furaldeído/química , Açúcares/química
4.
Food Chem ; 420: 136094, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062082

RESUMO

1H NMR analysis of organic extracts of honey is a powerful technique to confirm its botanical origin, thanks to the presence of signals that are specific to each floral typology. Similarly, signals from bee metabolites provide an important tool to verify honey entomological origin. Here, we present a method for honey screening that does not require any detailed analysis of the NMR spectrum for the detection and quantification of such markers. Our approach is based on the measurement of two spectral parameters, named entomological factor (EF) and aromatic factor (AF), calculated by integration of well-defined regions of the NMR spectrum. The values of EF and AF can reveal direct or indirect dilution of honey with sugar syrups. This method was tested on honeys of different floral origins and could identify all adulterated samples previously recognized by official techniques. Notably, several samples found compliant by official methods were proven non-genuine by the proposed approach.


Assuntos
Mel , Abelhas , Animais , Mel/análise , Espectroscopia de Ressonância Magnética/métodos , Açúcares/análise , Açúcares/química
5.
Phys Chem Chem Phys ; 25(3): 1734-1754, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36594779

RESUMO

Experimental reports about observation of spontaneous mirror symmetry breaking and chiral amplification in stereoselective Mannich and aldol reactions, run under fully achiral initial conditions, have drawn a lot of attention, fuelled partly by the role these reactions could have played in chemical evolution as a cause for still puzzling observed homochirality of biomolecules, often considered a prerequisite for the origin of life. We have now revisited this still unresolved problem, using DFT computation of all combinatorially possible transition states and numerical solution of complete set of resulting coupled kinetic rate equations to model the aldol reaction rigorously "from the first principles" and without making any a priori assumptions. Spontaneous mirror symmetry breaking in this autocatalytic, reversible, closed and homogenous system is explained by a supercritical pitchfork bifurcation, occurring in concentrations of enantiomers due to time-delayed kinetic instability of racemic composition of reaction mixture, when reactants are initially provided in non-stoichiometric quantities. Same process, taking place under similar conditions in primordial "soup" of chemicals, might conceivably explain origin of biological homochirality of sugar molecules on early earth billions of years ago. Our results suggest that seemingly innocuous chemical reactions could exhibit unexpected and counter-intuitive emergent behaviour, when initial conditions are appropriately chosen. Chiral amplification in self-catalyzed aldol reaction occurs during approach of thermodynamic equilibrium in accord with principle of microscopic reversibility and second law of thermodynamics.


Assuntos
Aldeídos , Açúcares , Açúcares/química , Catálise , Aldeídos/química , Estereoisomerismo
6.
Nature ; 608(7922): 390-396, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922513

RESUMO

Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1-3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a ß-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates.


Assuntos
Antibacterianos , Bactérias , Membrana Celular , Depsipeptídeos , Viabilidade Microbiana , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/citologia , Bactérias/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Difosfatos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Lipídeos/química , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Pirrolidinas/química , Açúcares/química
7.
Proc Natl Acad Sci U S A ; 119(29): e2201747119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858353

RESUMO

Bacteria have evolved multiple signal transduction systems that permit an adaptation to changing environmental conditions. Chemoreceptor-based signaling cascades are very abundant in bacteria and are among the most complex signaling systems. Currently, our knowledge on the molecular features that determine signal recognition at chemoreceptors is limited. Chemoreceptor McpA of Bacillus velezensis SQR9 has been shown to mediate chemotaxis to a broad range of different ligands. Here we show that its ligand binding domain binds directly 13 chemoattractants. We provide support that organic acids and amino acids bind to the membrane-distal and membrane-proximal module of the dCache domain, respectively, whereas binding of sugars/sugar alcohols occurred at both modules. Structural biology studies combined with site-directed mutagenesis experiments have permitted to identify 10 amino acid residues that play key roles in the recognition of multiple ligands. Residues in membrane-distal and membrane-proximal regions were central for sensing organic acids and amimo acids, respectively, whereas all residues participated in sugars/sugar alcohol sensing. Most characterized chemoreceptors possess a narrow and well-defined ligand spectrum. We propose here a sensing mechanism involving both dCache modules that allows the integration of very diverse signals by a single chemoreceptor.


Assuntos
Bacillus , Proteínas de Bactérias , Quimiotaxia , Proteínas Quimiotáticas Aceptoras de Metil , Bacillus/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ligantes , Proteínas Quimiotáticas Aceptoras de Metil/química , Proteínas Quimiotáticas Aceptoras de Metil/metabolismo , Ligação Proteica , Domínios Proteicos , Açúcares/química
8.
Nature ; 608(7921): 74-79, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35709829

RESUMO

The identification of general and efficient methods for the construction of oligosaccharides stands as one of the great challenges for the field of synthetic chemistry1,2. Selective glycosylation of unprotected sugars and other polyhydroxylated nucleophiles is a particularly significant goal, requiring not only control over the stereochemistry of the forming bond but also differentiation between similarly reactive nucleophilic sites in stereochemically complex contexts3,4. Chemists have generally relied on multi-step protecting-group strategies to achieve site control in glycosylations, but practical inefficiencies arise directly from the application of such approaches5-7. Here we describe a strategy for small-molecule-catalyst-controlled, highly stereo- and site-selective glycosylations of unprotected or minimally protected mono- and disaccharides using precisely designed bis-thiourea small-molecule catalysts. Stereo- and site-selective galactosylations and mannosylations of a wide assortment of polyfunctional nucleophiles is thereby achieved. Kinetic and computational studies provide evidence that site-selectivity arises from stabilizing C-H/π interactions between the catalyst and the nucleophile, analogous to those documented in sugar-binding proteins. This work demonstrates that highly selective glycosylation reactions can be achieved through control of stabilizing non-covalent interactions, a potentially general strategy for selective functionalization of carbohydrates.


Assuntos
Técnicas de Química Sintética , Glicosilação , Açúcares , Catálise , Dissacarídeos/síntese química , Dissacarídeos/química , Cinética , Monossacarídeos/síntese química , Monossacarídeos/química , Estereoisomerismo , Açúcares/síntese química , Açúcares/química
9.
J Am Chem Soc ; 144(26): 11870-11877, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731921

RESUMO

Radical-mediated transformations have emerged as powerful methods for the synthesis of rare and unnatural branched, deoxygenated, and isomeric sugars. Here, we describe a radical-mediated axial-to-equatorial alcohol epimerization method to transform abundant glycans into rare isomers. The method delivers highly predictable and selective reaction outcomes that are complementary to other sugar isomerization methods. The synthetic utility of isomer interconversion is showcased through expedient glycan synthesis, including one-step glycodiversification. Mechanistic studies reveal that both site- and diastereoselectivities are achieved by highly selective H atom abstraction of equatorially disposed α-hydroxy C-H bonds.


Assuntos
Carboidratos , Açúcares , Carboidratos/química , Hexoses , Isomerismo , Polissacarídeos/química , Açúcares/química
10.
J Biol Chem ; 298(4): 101809, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35271853

RESUMO

Nucleotide sugar (NS) dehydratases play a central role in the biosynthesis of deoxy and amino sugars, which are involved in a variety of biological functions in all domains of life. Bacteria are true masters of deoxy sugar biosynthesis as they can produce a wide range of highly specialized monosaccharides. Indeed, deoxy and amino sugars play important roles in the virulence of gram-positive and gram-negative pathogenic species and are additionally involved in the biosynthesis of diverse macrolide antibiotics. The biosynthesis of deoxy sugars relies on the activity of NS dehydratases, which can be subdivided into three groups based on their structure and reaction mechanism. The best-characterized NS dehydratases are the 4,6-dehydratases that, together with the 5,6-dehydratases, belong to the NS-short-chain dehydrogenase/reductase superfamily. The other two groups are the less abundant 2,3-dehydratases that belong to the Nudix hydrolase superfamily and 3-dehydratases, which are related to aspartame aminotransferases. 4,6-Dehydratases catalyze the first step in all deoxy sugar biosynthesis pathways, converting nucleoside diphosphate hexoses to nucleoside diphosphate-4-keto-6-deoxy hexoses, which in turn are further deoxygenated by the 2,3- and 3-dehydratases to form dideoxy and trideoxy sugars. In this review, we give an overview of the NS dehydratases focusing on the comparison of their structure and reaction mechanisms, thereby highlighting common features, and investigating differences between closely related members of the same superfamilies.


Assuntos
Hidroliases , Nucleotídeos , Açúcares , Hidroliases/química , Hidroliases/metabolismo , Nucleosídeos/química , Nucleotídeos/química , Especificidade por Substrato , Açúcares/química , Açúcares/metabolismo
11.
Sci Rep ; 12(1): 2521, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169269

RESUMO

Novel Immunological and Mass Spectrometry Methods for Comprehensive Analysis of Recalcitrant Oligosaccharides in AFEX Pretreated Corn Stover. Lignocellulosic biomass is a sustainable alternative to fossil fuel and is extensively used for developing bio-based technologies to produce products such as food, feed, fuel, and chemicals. The key to these technologies is to develop cost competitive processes to convert complex carbohydrates present in plant cell wall to simple sugars such as glucose, xylose, and arabinose. Since lignocellulosic biomass is highly recalcitrant, it must undergo a combination of thermochemical treatment such as Ammonia Fiber Expansion (AFEX), dilute acid (DA), Ionic Liquid (IL) and biological treatment such as enzyme hydrolysis and microbial fermentation to produce desired products. However, when using commercial fungal enzymes during hydrolysis, only 75-85% of the soluble sugars generated are monomeric sugars, while the remaining 15-25% are soluble recalcitrant oligosaccharides that cannot be easily utilized by microorganisms. Previously, we successfully separated and purified the soluble recalcitrant oligosaccharides using a combination of charcoal and celite-based separation followed by size exclusion chromatography and studies their inhibitory properties on enzymes. We discovered that the oligosaccharides with higher degree of polymerization (DP) containing methylated uronic acid substitutions were more recalcitrant towards commercial enzyme mixtures than lower DP and neutral oligosaccharides. Here, we report the use of several complementary techniques that include glycome profiling using plant biomass glycan specific monoclonal antibodies (mAbs) to characterize sugar linkages in plant cell walls and enzymatic hydrolysate, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) using structurally-informative diagnostic peaks offered by negative ion post-secondary decay spectra, gas chromatography followed by mass spectrometry (GC-MS) to characterize oligosaccharide sugar linkages with and without derivatization. Since oligosaccharides (DP 4-20) are small, it is challenging to mobilize these molecules for mAbs binding and characterization. To overcome this problem, we have applied a new biotin-coupling based oligosaccharide immobilization method that successfully tagged most of the low DP soluble oligosaccharides on to a micro-plate surface followed by specific linkage analysis using mAbs in a high-throughput system. This new approach will help develop more advanced versions of future high throughput glycome profiling methods that can be used to separate and characterize oligosaccharides present in biomarkers for diagnostic applications.


Assuntos
Anticorpos Monoclonais/imunologia , Biotina/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Oligossacarídeos/química , Oligossacarídeos/imunologia , Extratos Vegetais/química , Extratos Vegetais/imunologia , Folhas de Planta/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Zea mays/química , Biomassa , Configuração de Carboidratos , Parede Celular/química , Cromatografia em Gel/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Hidrólise , Lignina/química , Açúcares/química
12.
Biochemistry ; 61(4): 239-251, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104120

RESUMO

MA'AT analysis has been applied to methyl ß-d-ribofuranoside (3) and methyl 2-deoxy-ß-d-erythro-pentofuranoside (4) to demonstrate the ability of this new experimental method to determine multi-state conformational equilibria in solution. Density functional theory (DFT) was used to obtain parameterized equations for >20 NMR spin-coupling constants sensitive to furanose ring conformation in 3 and 4, and these equations were used in conjunction with experimental spin-couplings to produce unbiased MA'AT models of ring pseudorotation. These models describe two-state north-south conformational exchange consistent with results obtained from traditional treatments of more limited sets of NMR spin-couplings (e.g., PSEUROT). While PSEUROT, MA'AT, and aqueous molecular dynamics models yielded similar two-state models, MA'AT analysis gives more reliable results since significantly more experimental observables are employed compared to PSEUROT, and no assumptions are needed to render the fitting tractable. MA'AT models indicate a roughly equal distribution of north and south ring conformers of 4 in aqueous (2H2O) solution compared to ∼80% north forms for 3. Librational motion about the mean pseudorotation phase angles P of the preferred north and south conformers of 3 in solution is more constrained than that for 4. The greater rigidity of the ß-ribo ring may be caused by synergistic stereoelectronic effects and/or noncovalent (e.g., hydrogen-bonding) interactions in solution that preferentially stabilize north forms of 3. MA'AT analysis of oligonucleotides and other furanose ring-containing biomolecules promises to improve current experimental models of sugar ring behavior in solution and help reveal context effects on ring conformation in more complex biologically important systems.


Assuntos
Glicosídeos/química , Ribonucleosídeos/química , Configuração de Carboidratos , Teoria da Densidade Funcional , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Conformação Molecular , Simulação de Dinâmica Molecular , Oligonucleotídeos/química , Açúcares/química , Água/química
13.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209118

RESUMO

The use of F. religiosa might be beneficial in inflammatory illnesses and can be used for a variety of health conditions. In this article, we studied the identification of antioxidants using (DPPH) 2,2-Diphenyl-1-picrylhydrazylradical scavenging activity in Ficus religiosa, as F. religiosa is an important herbal plant, and every part of it has various medicinal properties such as antibacterial properties that can be used by the researchers in the development and design of various new drugs. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) is a popular, quick, easy, and affordable approach for the measurement of antioxidant properties that includes the use of the free radicals used for assessing the potential of substances to serve as hydrogen providers or free-radical scavengers (FRS). The technique of DPPH testing is associated with the elimination of DPPH, which would be a stabilized free radical. The free-radical DPPH interacts with an odd electron to yield a strong absorbance at 517 nm, i.e., a purple hue. An FRS antioxidant, for example, reacts to DPPH to form DPPHH, which has a lower absorbance than DPPH because of the lower amount of hydrogen. It is radical in comparison to the DPPH-H form, because it causes decolorization, or a yellow hue, as the number of electrons absorbed increases. Decolorization affects the lowering capacity significantly. As soon as the DPPH solutions are combined with the hydrogen atom source, the lower state of diphenylpicrylhydrazine is formed, shedding its violet color. To explain the processes behind the DPPH tests, as well as their applicability to Ficus religiosa (F. religiosa) in the manufacture of metal oxide nanoparticles, in particular MgO, and their influence on antioxidants, a specimen from the test was chosen for further study. According to our findings, F. religiosa has antioxidant qualities and may be useful in the treatment of disorders caused by free radicals.


Assuntos
Compostos de Bifenilo/antagonistas & inibidores , Ficus/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Picratos/antagonistas & inibidores , Carboidratos/química , Fenóis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Proteínas de Plantas/química , Açúcares/química
14.
ACS Appl Mater Interfaces ; 14(2): 2618-2628, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34989547

RESUMO

Intracellular delivery of functional molecules is of great importance in various biomedical and biotechnology applications. Recently, nanoparticle-based photothermal poration has attracted increasing attention because it provided a facile and efficient method to permeabilize cells transiently, facilitating the entry of exogenous molecules into cells. However, this method still has some safety concerns associated with the nanoparticles that bind to the cell membranes or enter the cells. Herein, a nanoplatform with both photothermal property and sugar-triggered cleaning ability for intracellular delivery is developed based on phenylboronic acid (PBA) functionalized porous magnetic nanoparticles (named as M-PBA). The M-PBA particles could bind to the target cells effectively through the specific interactions between PBA groups and the cis-diol containing components on the cell membrane. During a short-term near-infrared irradiation, the bound particles convert absorbed light energy to heat, enabling high-efficiency delivery of various exogenous molecules into the target cells via a photothermal poration mechanism. After delivery, the bound particles could be easily "cleaned" from the cell surface via mild sugar-treatment and collected by a magnet, avoiding the possible side effects caused by the entrance of particles or their fragments. The delivery and cleaning process is short and effective without compromising the viability and proliferation ability of the cells with delivered molecules, suggesting that the M-PBA particles could be used as promising intracellular delivery agents with a unique combination of efficiency, safety, and flexibility.


Assuntos
Materiais Biocompatíveis/química , Ácidos Borônicos/química , Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita/química , Fototerapia , Açúcares/química , Membrana Celular/química , Células HeLa , Humanos , Teste de Materiais , Estrutura Molecular , Tamanho da Partícula , Células Tumorais Cultivadas
15.
PLoS Comput Biol ; 18(1): e1009678, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051172

RESUMO

Sugars are crucial components in biosystems and industrial applications. In aqueous environments, the natural state of short saccharides or charged glycosaminoglycans is floating and wiggling in solution. Therefore, tools to characterize their structure in a native aqueous environment are crucial but not always available. Here, we show that a combination of Raman/ROA and, on occasions, NMR experiments with Molecular Dynamics (MD) and Quantum Mechanics (QM) is a viable method to gain insights into structural features of sugars in solutions. Combining these methods provides information about accessible ring puckering conformers and their proportions. It also provides information about the conformation of the linkage between the sugar monomers, i.e., glycosidic bonds, allowing for identifying significantly accessible conformers and their relative abundance. For mixtures of sugar moieties, this method enables the deconvolution of the Raman/ROA spectra to find the actual amounts of its molecular constituents, serving as an effective analytical technique. For example, it allows calculating anomeric ratios for reducing sugars and analyzing more complex sugar mixtures to elucidate their real content. Altogether, we show that combining Raman/ROA spectroscopies with simulations is a versatile method applicable to saccharides. It allows for accessing many features with precision comparable to other methods routinely used for this task, making it a viable alternative. Furthermore, we prove that the proposed technique can scale up by studying the complicated raffinose trisaccharide, and therefore, we expect its wide adoption to characterize sugar structural features in solution.


Assuntos
Análise Espectral Raman/métodos , Açúcares/análise , Açúcares/química , Água/química , Biologia Computacional , Simulação de Dinâmica Molecular , Rotação Ocular
16.
Curr Med Chem ; 29(7): 1271-1292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34951354

RESUMO

Glycosidases, the enzymes responsible for the breakdown of glycoconjugates, including di-, oligo- and polysaccharides, are present across all kingdoms of life. The extreme chemical stability of the glycosidic bond combined with the catalytic rates achieved by glycosidases makes them among the most proficient of all enzymes. Given their multitude of roles in vivo, inhibition of these enzymes is highly attractive with potential in the treatment of a vast array of pathologies ranging from lysosomal storage and diabetes to viral infections. Therefore great efforts have been invested in the last three decades to design and synthesize inhibitors of glycosidases leading to a number of drugs currently on the market. Amongst the vast array of structures that have been disclosed, sugars incorporating an amidine moiety have been the focus of many research groups around the world because of their glycosidase transition state-like structure. In this review, we report and discuss the structure, the inhibition profile, and the use of these molecules, including related structural congeners as transition state analogs.


Assuntos
Amidinas , Glicosídeo Hidrolases , Amidinas/química , Amidinas/farmacologia , Carboidratos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicosídeo Hidrolases/antagonistas & inibidores , Humanos , Açúcares/química
17.
Toxicol In Vitro ; 78: 105270, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34757181

RESUMO

The biopersistence of fiber materials is one of the cornerstones in estimating potential risk to human health upon inhalation. To connect epidemiological and in vivo investigations with in vitro studies, reliable and robust methods of fiber biopersistence determination and understanding of fiber dissolution mechanism are required. We investigated dissolution properties of oil treated stone wool fibers with and without sugar-based binder (SBB) at 37 °C in the liquids representing macrophages intracellular conditions (pH 4.5). Conditions varied from batch to flow of different rates. Fiber morphology and surface chemistry changes caused by dissolution were monitored with scanning electron microscopy and time-of-flight secondary ion mass spectrometry mapping. Stone wool fiber dissolution rate depends on liquid composition (presence of ligands, such as citrate), pH, reaction products transport and fibers wetting properties. The dissolution rate decreases when: 1) citrate is consumed by the reaction with the released Al cations; 2) the pH increases during a reaction in poorly buffered solutions; 3) the dissolution products are accumulated; 4) fibers are not fully wetted with the fluid. Presence of SBB has no influence on dissolution rate if fiber material was wetted prior to dissolution experiment to avoid poorly wetted fiber agglomerates formation in the synthetic lung fluids.


Assuntos
Fibras Minerais/análise , Solubilidade , Pulmão , Microscopia Eletrônica de Varredura , Espectrometria de Massa de Íon Secundário , Açúcares/química
18.
J Sci Food Agric ; 102(1): 147-155, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34057213

RESUMO

BACKGROUND: Bacterial community successions were surveyed during the processing stages of sugar production using high-throughput sequencing methods. Furthermore, the correlation between bacterial community and nitrate/nitrite content in beet sugar processing were investigated. RESULTS: In an analysis of the V3-V4 region of the 16S rDNA gene, 254 122 effective sequences were obtained from samples, which included sugar beet, cossettes, diffusion juice, second-phase diffusion juice, light juice and thick juice. The results showed that dominant genera included Pantoea, Pseudomonas, Leuconostoc and Burkholderia. Moreover, significant changes in bacterial communities were observed in samples. Regarding the relevant nitrogen metabolic potential, this study revealed communities with the ability for nitrate and nitrite metabolism. Furthermore, a shaking experiment involving diffusion juice and second-phase diffusion juice was performed, and results showed that the nitrate level declined 73% and 98% in 36 h, respectively. These results suggested that the bacterial communities contribute to nitrate and nitrite transformation. CONCLUSION: This study illustrated that the bacterial communities and their specific effects on the formation of nitrate and nitrite during beet sugar processing. The results presented the basic concept involving the nitrate- and nitrite-forming pathways directly related to the mechanism of bacterial community growth. This study could facilitate an understanding of the correlation between nitrite content and microorganisms to guide beet sugar manufacturers regarding the control of nitrite and nitrate content. © 2021 Society of Chemical Industry.


Assuntos
Bactérias/metabolismo , Beta vulgaris/química , Nitratos/análise , Nitritos/análise , Tubérculos/microbiologia , Açúcares/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Beta vulgaris/microbiologia , Biotransformação , Manipulação de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Nitratos/metabolismo , Nitritos/metabolismo , Tubérculos/química , Açúcares/química
19.
J Sci Food Agric ; 102(3): 1056-1065, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34312850

RESUMO

BACKGROUND: Foam-gels are one of the most important multicomponent-model systems in aerated confectionery, and an investigation of their microstructure is desirable. In this research, the structure-function relationship of xanthan gum/guar gum (XG/GG) and licorice (Glycyrrhiza glabra) root extract powder (LEP) was investigated in a high-sugar medium. Foam-gel systems were prepared at 4:10% to 8:20% ratios of LEP to biopolymer. RESULTS: The results show that increasing the LEP content reduced both the melting point and enthalpy, probably due to higher overrun and weaker junctions. Boosting the XG/GG ratio led the enhancement of mechanical properties, whereas increasing the LEP concentration weakened all textural parameters, which could be due to the poor structure of the network in the presence of the foaming agent, increased moisture content and overrun. In the whipped mixture samples containing 10 g kg-1 XG/GG, higher foaming capacity was observed. By increasing the level of biopolymers, smaller and more uniform air cells were formed according to a scanning electron microscopical study. At higher concentration of LEP, smaller bubbles and increased porosity were seen, which could be attributed to the availability of surfactant in the interfacial layer. CONCLUSION: Maximum structural strength was achieved at a 4:20 ratio of LEP to XG/GG. In rheological experiments, pseudoplastic behavior was seen in all samples. Generally, this model system can be simulated for other herbal extracts containing natural surfactants such as saponins. Achieving a more detailed understanding of these structures and their interactions could help in formulating novel food products. © 2021 Society of Chemical Industry.


Assuntos
Galactanos/química , Glycyrrhiza/química , Mananas/química , Extratos Vegetais/química , Gomas Vegetais/química , Polissacarídeos Bacterianos/química , Açúcares/química , Galactanos/isolamento & purificação , Mananas/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Gomas Vegetais/isolamento & purificação , Raízes de Plantas/química , Polissacarídeos Bacterianos/isolamento & purificação , Reologia , Açúcares/isolamento & purificação , Tensoativos/química , Tensoativos/isolamento & purificação , Viscosidade
20.
Plant Cell Environ ; 45(1): 12-22, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34564870

RESUMO

The analysis of the non-exchangeable hydrogen isotope ratio (δ2 Hne ) in carbohydrates is mostly limited to the structural component cellulose, while simple high-throughput methods for δ2 Hne values of non-structural carbohydrates (NSC) such as sugar and starch do not yet exist. Here, we tested if the hot vapor equilibration method originally developed for cellulose is applicable for NSC, verified by comparison with the traditional nitration method. We set up a detailed analytical protocol and applied the method to plant extracts of leaves from species with different photosynthetic pathways (i.e., C3 , C4 and CAM). δ2 Hne of commercial sugars and starch from different classes and sources, ranging from -157.8 to +6.4‰, were reproducibly analysed with precision between 0.2‰ and 7.7‰. Mean δ2 Hne values of sugar are lowest in C3 (-92.0‰), intermediate in C4 (-32.5‰) and highest in CAM plants (6.0‰), with NSC being 2 H-depleted compared to cellulose and sugar being generally more 2 H-enriched than starch. Our results suggest that our method can be used in future studies to disentangle 2 H-fractionation processes, for improving mechanistic δ2 Hne models for leaf and tree-ring cellulose and for further development of δ2 Hne in plant carbohydrates as a potential proxy for climate, hydrology, plant metabolism and physiology.


Assuntos
Bioquímica de Carboidratos/métodos , Hidrogênio/análise , Plantas/química , Amido/química , Açúcares/química , Celulose/química , Deutério/análise , Folhas de Planta/química , Vapor , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...